THE SGP8 MODEL

The NORAD mean element sets can be used for prediction with SGP8. All symbols not defined below are defined in the list of symbols in Section Twelve. The original mean motion (n''o) and semimajor axis (a''o) are first recovered from the input elements by the equations

#math194#

a1 = #tex2html_wrap_indisplay4159##tex2html_wrap_indisplay4160##tex2html_wrap_indisplay4161#

#math195#

δ1 = #tex2html_wrap_indisplay4163##tex2html_wrap_indisplay4164##tex2html_wrap_indisplay4165#

#math196#

ao = a1#tex2html_wrap_indisplay4167#1 - #tex2html_wrap_indisplay4168#δ1 - δ12 - #tex2html_wrap_indisplay4171#δ13#tex2html_wrap_indisplay4174#

#math197#

δo = #tex2html_wrap_indisplay4176##tex2html_wrap_indisplay4177##tex2html_wrap_indisplay4178#

#math198#

n''o = #tex2html_wrap_indisplay4180#

#math199#

a''o = #tex2html_wrap_indisplay4182#.

The ballistic coefficient (B term) is then calculated from the B* drag term by

#math200#

B = 2B*/ρo

where

#math201#

ρo = (2.461×10-5)#tex2html_wrap_indisplay4187#

is a reference value of atmospheric density.

Then calculate the constants

#math202#

β2 = 1 - e2

#math203#

θ = cos i

#math204#

#tex2html_wrap_indisplay4191# = - #tex2html_wrap_indisplay4192##tex2html_wrap_indisplay4193#(1 - 3θ2)

#math205#

#tex2html_wrap_indisplay4195# = - #tex2html_wrap_indisplay4196##tex2html_wrap_indisplay4197#(1 - 5θ2)

#math206#

#tex2html_wrap_indisplay4199# = - 3#tex2html_wrap_indisplay4200#θ

#math207#

#tex2html_wrap_indisplay4202# = #tex2html_wrap_indisplay4203##tex2html_wrap_indisplay4204#(13 - 78θ2 +137θ4)

#math208#

#tex2html_wrap_indisplay4206# = #tex2html_wrap_indisplay4207##tex2html_wrap_indisplay4208#(7 - 114θ2 +395θ4) + #tex2html_wrap_indisplay4209##tex2html_wrap_indisplay4210#(3 - 36θ2 +49θ4)

#math209#

#tex2html_wrap_indisplay4212# = #tex2html_wrap_indisplay4213##tex2html_wrap_indisplay4214#θ(4 - 19θ2) + #tex2html_wrap_indisplay4215##tex2html_wrap_indisplay4216#θ(3 - 7θ2)

#math210#

#tex2html_wrap_indisplay4218# = n'' + #tex2html_wrap_indisplay4219# + #tex2html_wrap_indisplay4220#

#math211#

#tex2html_wrap_indisplay4222# = #tex2html_wrap_indisplay4223# + #tex2html_wrap_indisplay4224#

#math212#

#tex2html_wrap_indisplay4226# = #tex2html_wrap_indisplay4227# + #tex2html_wrap_indisplay4228#

#math213#

ξ = #tex2html_wrap_indisplay4230#

#math214#

η = esξ

#math215#

ψ = #tex2html_wrap_indisplay4233#

#math216#

α2 = 1 + e2

#math217#

Co = #tex2html_wrap_indisplay4236#o(qo - s)4n''a''ξ4α-1ψ-7

#math218#

C1 = #tex2html_wrap_indisplay4238#n''α4Co

#math219#

D1 = ξψ-2/a''β2

#math220#

D2 = 12 + 36η2 + #tex2html_wrap_indisplay4241#η4

#math221#

D3 = 15η2 + #tex2html_wrap_indisplay4243#η4

#math222#

D4 = 5η + #tex2html_wrap_indisplay4245#η3

#math223#

D5 = ξψ-2

#math224#

B1 = - k2(1 - 3θ2)

#math225#

B2 = - k2(1 - θ2)

#math226#

B3 = #tex2html_wrap_indisplay4250#sin i

#math227#

C2 = D1D3B2

#math228#

C3 = D4D5B3

#math229#

#tex2html_wrap_indisplay4254# = C1#tex2html_wrap_indisplay4255#2 + 3η2 +20 +53 + #tex2html_wrap_indisplay4256#e2 +34e2η2 + D1D2B1 + C2cos 2ω + C3sinω#tex2html_wrap_indisplay4257#

#math230#

C4 = D1D7B2

#math231#

C5 = D5D8B3

#math232#

D6 = 30η + #tex2html_wrap_indisplay4261#η3

#math233#

D7 = 5η + #tex2html_wrap_indisplay4263#η3

#math234#

D8 = 1 + #tex2html_wrap_indisplay4265#η2 + η4

#math235#

#tex2html_wrap_indisplay4267# = - Co#tex2html_wrap_indisplay4268#4η + η3 +5e + 152 + #tex2html_wrap_indisplay4269#e2η +7e2η3 + D1D6B1 + C4cos 2ω + C5sinω#tex2html_wrap_indisplay4270#

#math236#

#tex2html_wrap_indisplay4272#/α = e#tex2html_wrap_indisplay4273#α-2

#math237#

C6 = #tex2html_wrap_indisplay4275##tex2html_wrap_indisplay4276#

#math238#

#tex2html_wrap_indisplay4278#/ξ = 2a''ξ(C6β2 + e#tex2html_wrap_indisplay4279#)

#math239#

#tex2html_wrap_indisplay4281# = (#tex2html_wrap_indisplay4282# + e#tex2html_wrap_indisplay4283#/ξ)

#math240#

#tex2html_wrap_indisplay4285#/ψ = - η#tex2html_wrap_indisplay4286#ψ-2

#math241#

#tex2html_wrap_indisplay4288#/Co = C6 +4#tex2html_wrap_indisplay4289#/ξ - #tex2html_wrap_indisplay4290#/α -7#tex2html_wrap_indisplay4291#/ψ

#math242#

#tex2html_wrap_indisplay4293#/C1 = #tex2html_wrap_indisplay4294#/n'' + 4#tex2html_wrap_indisplay4295#/α + #tex2html_wrap_indisplay4296#/Co

#math243#

D9 = 6η +20e + 152 +68e2η

#math244#

D10 = 20η +5η3 +17e + 682

#math245#

D11 = 72η +18η3

#math246#

D12 = 30η +10η3

#math247#

D13 = 5 + #tex2html_wrap_indisplay4302#η2

#math248#

D14 = #tex2html_wrap_indisplay4304#/ξ -2#tex2html_wrap_indisplay4305#/ψ

#math249#

D15 = 2(C6 + e#tex2html_wrap_indisplay4307#β-2)

#math250#

#tex2html_wrap_indisplay4309# = D1(D14 + D15)

#math251#

#tex2html_wrap_indisplay4311# = #tex2html_wrap_indisplay4312#D11

#math252#

#tex2html_wrap_indisplay4314# = #tex2html_wrap_indisplay4315#D12

#math253#

#tex2html_wrap_indisplay4317# = #tex2html_wrap_indisplay4318#D13

#math254#

#tex2html_wrap_indisplay4320# = D5D14

#math255#

#tex2html_wrap_indisplay4322# = B2(#tex2html_wrap_indisplay4323#D3 + D1#tex2html_wrap_indisplay4324#)

#math256#

#tex2html_wrap_indisplay4326# = B3(#tex2html_wrap_indisplay4327#D4 + D5#tex2html_wrap_indisplay4328#)

#math257#

#tex2html_wrap_indisplay4330# = - #tex2html_wrap_indisplay4331##tex2html_wrap_indisplay4332#(1 - 5θ2)

#math258#

D16 = D9#tex2html_wrap_indisplay4334# + D10#tex2html_wrap_indisplay4335# + B1(#tex2html_wrap_indisplay4336#D2 + D1#tex2html_wrap_indisplay4337#) + #tex2html_wrap_indisplay4338#cos 2ω + #tex2html_wrap_indisplay4339#sinω + #tex2html_wrap_indisplay4340#(C3cosω -2C2sin 2ω)

#math259#

#tex2html_wrap_indisplay4342# = #tex2html_wrap_indisplay4343##tex2html_wrap_indisplay4344#/C1 + C1D16

#math260#

#tex2html_wrap_indisplay4346# = #tex2html_wrap_indisplay4347#

#math261#

D17 = #tex2html_wrap_indisplay4349#/n'' - (#tex2html_wrap_indisplay4350#/n'')2

#math262#

#tex2html_wrap_indisplay4352#/ξ = 2(#tex2html_wrap_indisplay4353#/ξ - C6)#tex2html_wrap_indisplay4354#/ξ +2a''ξ#tex2html_wrap_indisplay4355##tex2html_wrap_indisplay4356#D17β2 -2C6e#tex2html_wrap_indisplay4357# + #tex2html_wrap_indisplay4358# + e#tex2html_wrap_indisplay4359##tex2html_wrap_indisplay4360#

#math263#

#tex2html_wrap_indisplay4362# = (#tex2html_wrap_indisplay4363# +2#tex2html_wrap_indisplay4364##tex2html_wrap_indisplay4365#/ξ) + η#tex2html_wrap_indisplay4366#/ξ

#math264#

D18 = #tex2html_wrap_indisplay4368#/ξ - (#tex2html_wrap_indisplay4369#/ξ)2

#math265#

D19 = - (#tex2html_wrap_indisplay4371#/ψ)2(1 + η-2) - η#tex2html_wrap_indisplay4372#ψ-2

#math266#

#tex2html_wrap_indisplay4374# = #tex2html_wrap_indisplay4375#(D14 + D15) + D1#tex2html_wrap_indisplay4376#D18 -2D19 + #tex2html_wrap_indisplay4377#D17 +2α2#tex2html_wrap_indisplay4378#β-4 +2e#tex2html_wrap_indisplay4379#β-2#tex2html_wrap_indisplay4380#

#math267#

#tex2html_wrap_indisplay4382#o = #tex2html_wrap_indisplay4383#

#math268#

p = #tex2html_wrap_indisplay4385#

#math269#

γ = - #tex2html_wrap_indisplay4387##tex2html_wrap_indisplay4388#

#math270#

nD = #tex2html_wrap_indisplay4390#

#math271#

q = 1 - #tex2html_wrap_indisplay4392#

#math272#

eD = #tex2html_wrap_indisplay4394#

where all quantities are epoch values.

The secular effects of atmospheric drag and gravitation are included by

#math273#

n = n''o + nD[1 - (1 - γ(t - to))p]

#math274#

e = eo + eD[1 - (1 - γ(t - to))q]

#math275#

ω = ωo + #tex2html_wrap_indisplay4398##tex2html_wrap_indisplay4399#(t - to) + #tex2html_wrap_indisplay4400##tex2html_wrap_indisplay4401#Z1#tex2html_wrap_indisplay4402# + #tex2html_wrap_indisplay4403#(t - to)

#math276#

Ω = Ωo'' + #tex2html_wrap_indisplay4405##tex2html_wrap_indisplay4406#(t - to) + #tex2html_wrap_indisplay4407##tex2html_wrap_indisplay4408#Z1#tex2html_wrap_indisplay4409# + #tex2html_wrap_indisplay4410#(t - to)

#math277#

M = Mo + n''o(t - to) + Z1 + #tex2html_wrap_indisplay4412##tex2html_wrap_indisplay4413#(t - to) + #tex2html_wrap_indisplay4414##tex2html_wrap_indisplay4415#Z1#tex2html_wrap_indisplay4416# + #tex2html_wrap_indisplay4417#(t - to)

where

#math278#

Z1 = #tex2html_wrap_indisplay4419##tex2html_wrap_indisplay4420#(t - to) + #tex2html_wrap_indisplay4421#[(1 - γ(t - to))p+1 - 1]#tex2html_wrap_indisplay4422#.

If drag is very small (#math279##tex2html_wrap_inline4424# less than #math280#1.5×10-6/min) then the secular equations for n, e, and Z1 should be replaced by

#math281#

n = n''o + #tex2html_wrap_indisplay4430#(t - to)

#math282#

e = e''o + #tex2html_wrap_indisplay4432#(t - to)

#math283#

Z1 = #tex2html_wrap_indisplay4434##tex2html_wrap_indisplay4435#(t - to)2

where (t - to) is time since epoch and where

#math284#

#tex2html_wrap_indisplay4438# = - #tex2html_wrap_indisplay4439##tex2html_wrap_indisplay4440#(1 - eo).

Solve Kepler's equation for E by using the iteration equation

#math285#

Ei+1 = Ei + ΔEi

with

#math286#

ΔEi = #tex2html_wrap_indisplay4444#

and

#math287#

E1 = M + e sin M + #tex2html_wrap_indisplay4446#e2sin 2M.

The following equations are used to calculate preliminary quantities needed for the short-period periodics.

#math288#

a = #tex2html_wrap_indisplay4448##tex2html_wrap_indisplay4449##tex2html_wrap_indisplay4450#

#math289#

β = (1 - e2)#tex2html_wrap_indisplay4452#

#math290#

sin f = #tex2html_wrap_indisplay4454#

#math291#

cos f = #tex2html_wrap_indisplay4456#

#math292#

u = f + ω

#math293#

r'' = #tex2html_wrap_indisplay4459#

#math294#

#tex2html_wrap_indisplay4461# = #tex2html_wrap_indisplay4462#sin f

#math295#

(r#tex2html_wrap_indisplay4464#)'' = #tex2html_wrap_indisplay4465#

#math296#

δr = #tex2html_wrap_indisplay4467##tex2html_wrap_indisplay4468#[(1 - θ2)cos 2u + 3(1 - 3θ2)] - #tex2html_wrap_indisplay4469##tex2html_wrap_indisplay4470#sin iosin u

#math297#

δ#tex2html_wrap_indisplay4472# = - n#tex2html_wrap_indisplay4473##tex2html_wrap_indisplay4474##tex2html_wrap_indisplay4475##tex2html_wrap_indisplay4476##tex2html_wrap_indisplay4477#(1 - θ2)sin 2u + #tex2html_wrap_indisplay4478##tex2html_wrap_indisplay4479#sin iocos u#tex2html_wrap_indisplay4480#

#math298#

δI = θ#tex2html_wrap_indisplay4482##tex2html_wrap_indisplay4483##tex2html_wrap_indisplay4484#sin iocos 2u - #tex2html_wrap_indisplay4485##tex2html_wrap_indisplay4486#e sinω#tex2html_wrap_indisplay4487#

#math299#

δ(r#tex2html_wrap_indisplay4489#) = - n#tex2html_wrap_indisplay4490##tex2html_wrap_indisplay4491##tex2html_wrap_indisplay4492#δr + na#tex2html_wrap_indisplay4493##tex2html_wrap_indisplay4494##tex2html_wrap_indisplay4495##tex2html_wrap_indisplay4496#δI

#math300#

δu = #tex2html_wrap_indisplay4498#

#math301#

δλ = #tex2html_wrap_indisplay4500#

The short-period periodics are added to give the osculating quantities

#math302#

r = r'' + δr

#math303#

#tex2html_wrap_indisplay4503# = #tex2html_wrap_indisplay4504# + δ#tex2html_wrap_indisplay4505#

#math304#

r#tex2html_wrap_indisplay4507# = (r#tex2html_wrap_indisplay4508#)'' + δ(r#tex2html_wrap_indisplay4509#)

#math305#

y4 = sin#tex2html_wrap_indisplay4511#sin u + cos u sin#tex2html_wrap_indisplay4512#δu + #tex2html_wrap_indisplay4513#sin u cos#tex2html_wrap_indisplay4514#δI

#math306#

y5 = sin#tex2html_wrap_indisplay4516#cos u - sin u sin#tex2html_wrap_indisplay4517#δu + #tex2html_wrap_indisplay4518#cos u cos#tex2html_wrap_indisplay4519#δI

#math307#

λ = u + Ω + δλ.

Unit orientation vectors are calculated by

#math308#

Ux = 2y4(y5sinλ - y4cosλ) + cosλ

#math309#

Uy = - 2y4(y5cosλ + y4sinλ) + sinλ

#math310#

Uz = 2y4cos#tex2html_wrap_indisplay4524#

#math311#

Vx = 2y5(y5sinλ - y4cosλ) - sinλ

#math312#

Vy = - 2y5(y5cosλ + y4sinλ) + cosλ

#math313#

Vz = 2y5cos#tex2html_wrap_indisplay4528#

where

#math314#

cos#tex2html_wrap_indisplay4530# = #tex2html_wrap_indisplay4531#.

Position and velocity are given by

#math315#

#tex2html_wrap_indisplay4533# = r#tex2html_wrap_indisplay4534#

#math316#

#tex2html_wrap_indisplay4536# = #tex2html_wrap_indisplay4537##tex2html_wrap_indisplay4538# + r#tex2html_wrap_indisplay4539##tex2html_wrap_indisplay4540#.

A FORTRAN IV computer code listing of the subroutine SGP8 is given below. #center4541#